Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Katalogdaten im Herbstsemester 2019

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2018)
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-0151-00LLineare Algebra Information Belegung eingeschränkt - Details anzeigen O5 KP3V + 2UV. C. Gradinaru
KurzbeschreibungInhalt: Lineare Gleichungssysteme - der Algorithmus von Gauss, Matrizen - LR-Zerlegung, Determinanten, Vektorräume, Ausgleichsrechnung - QR-Zerlegung, Lineare Abbildungen, Eigenwertproblem, Normalformen -Singulärwertzerlegung; numerische Aspekte; Einführung in MATLAB.
LernzielEinführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte
SkriptK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
LiteraturK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
252-0025-01LDiskrete Mathematik Information O7 KP4V + 2UU. Maurer
KurzbeschreibungInhalt: Mathematisches Denken und Beweise, Abstraktion. Mengen, Relationen (z.B. Aequivalenz- und Ordnungsrelationen), Funktionen, (Un-)abzählbarkeit, Zahlentheorie, Algebra (Gruppen, Ringe, Körper, Polynome, Unteralgebren, Morphismen), Logik (Aussagen- und Prädikatenlogik, Beweiskalküle).
LernzielHauptziele der Vorlesung sind (1) die Einführung der wichtigsten Grundbegriffe der diskreten Mathematik, (2) das Verständnis der Rolle von Abstraktion und von Beweisen und (3) die Diskussion einiger Anwendungen, z.B. aus der Kryptographie, Codierungstheorie und Algorithmentheorie.
InhaltSiehe Kurzbeschreibung.
Skriptvorhanden (englisch)
252-0856-00LInformatik Information O4 KP2V + 2UF. O. Friedrich, M. Schwerhoff
KurzbeschreibungDie Vorlesung bietet eine Einführung in das Programmieren mit einem Fokus auf systematischem algorithmischem Problemlösen. Lehrsprache ist C++. Es wird keine Programmiererfahrung vorausgesetzt.
LernzielPrimäres Lernziel der Vorlesung ist die Befähigung zum Programmieren mit C++. Studenten beherrschen nach erfolgreichem Abschluss der Vorlesung die Mechanismen zum Erstellen eines Programms, sie kennen die fundamentalen Kontrollstrukturen, Datenstrukturen und verstehen, wie man ein algorithmisches Problem in ein Programm abbildet. Sie haben eine Vorstellung davon, was "hinter den Kulissen" passiert, wenn ein Programm übersetzt und ausgeführt wird.
Sekundäre Lernziele der Vorlesung sind das Computer-basierte, algorithmische Denken, Verständnis der Möglichkeiten und der Grenzen der Programmierung und die Vermittlung der Denkart eines Computerwissenschaftlers.
InhaltWir behandeln fundamentale Datentypen, Ausdrücke und Anweisungen, (Grenzen der) Computerarithmetik, Kontrollanweisungen, Funktionen, Felder, zusammengesetze Strukturen und Zeiger. Im Teil zur Objektorientierung werden Klassen, Vererbung und Polymorhpie behandelt, es werden exemplarisch einfache dynamische Datentypen eingeführt.
Die Konzepte der Vorlesung werden jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt.
LiteraturBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata: C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-0231-10LAnalysis 1 Information Belegung eingeschränkt - Details anzeigen
Studierende im BSc EEIT können alternativ auch 401-1261-07L Analysis I (für BSc Mathematik, BSc Physik und BSc IN (phys.-chem. Fachrichtung)) belegen und den zugehörigen Jahreskurs prüfen lassen. Studierende im BSc EEIT, welche 401-1261-07L/401-1262-07L Analysis I/II anstelle von 401-0231-10L/401-0232-10L Analysis 1/2 belegen möchten, wenden sich vor der Belegung an ihren Studiengang.
O8 KP4V + 3UP. Feller
KurzbeschreibungReelle und komplexe Zahlen, Grenzwerte, Folgen, Reihen, Potenzreihen, stetige Abbildungen, Differential- und Integralrechnung einer Variablen, Einführung in gewöhnliche Differentialgleichungen
LernzielEinführung in die Grundlagen der Analysis
SkriptChristian Blatter: Ingenieur-Analysis (Kapitel 1-4)
LiteraturKonrad Koenigsberger, Analysis I.
Christian Blatter, Analysis I.
402-0043-00LPhysik IO4 KP3V + 1US. P. Quanz
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Mechanik von Massenpunkten und starren Körpern, Schwingungen und Wellen.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Die Studenten und Studentinnen soll lernen, physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltMechanik (Bewegung, Newtonsche Axiome, Arbeit und Energie, Impulserhaltung, Drehbewegungen, Gravitation, deformierbare Körper)
Schwingungen und Wellen (Schwingungen, mechanische Wellen, Akustik)
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler.
LiteraturTipler, Paul A., Mosca, Gene, Physik (für Wissenschaftler und Ingenieure), Springer Spektrum
Grundlagenfächer
Block G1
NummerTitelTypECTSUmfangDozierende
401-0353-00LAnalysis 3 Information O4 KP2V + 2UM. Iacobelli
KurzbeschreibungIn this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.
LernzielThe aim of this class is to provide students with a general overview of first and second order PDEs, and teach them how to solve some of these equations using characteristics and/or separation of variables.
Inhalt1.) General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)

2.) Quasilinear first order PDEs
- Solution with the method of characteristics
- COnservation laws

3.) Hyperbolic PDEs
- wave equation
- d'Alembert formula in (1+1)-dimensions
- method of separation of variables

4.) Parabolic PDEs
- heat equation
- maximum principle
- method of separation of variables

5.) Elliptic PDEs
- Laplace equation
- maximum principle
- method of separation of variables
- variational method
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)
Voraussetzungen / BesonderesPrerequisites: Analysis I and II, Fourier series (Complex Analysis)
401-0647-00LIntroduction to Mathematical Optimization Information O5 KP2V + 1UD. Adjiashvili
KurzbeschreibungIntroduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.
LernzielThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
InhaltTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteraturInformation about relevant literature will be given in the lecture.
Voraussetzungen / BesonderesThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.
401-0663-00LNumerical Methods for CSEO8 KP4V + 2U + 1PR. Hiptmair
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt* Computing with Matrices and Vectors
* Direct Methods for linear systems of equations
* Least Squares Techniques
* Data Interpolation and Fitting
[ Filtering Algorithms, optional]
* Approximation of Functions
* Numerical Quadrature
* Iterative Methods for non-linear systems of equations
* Single Step Methods for ODEs
* Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to the participants through the course web page, whose address will be announced in the beginning of the course.
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

W. Gander, M.J. Gander, and F. Kwok "Scientific Computing", Springer 2014.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
Block G2
NummerTitelTypECTSUmfangDozierende
402-0811-00LProgramming Techniques for Scientific Simulations IO5 KP4GR. Käppeli
KurzbeschreibungThis lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Lernziel
252-0061-00LSystems Programming and Computer Architecture Information O7 KP4V + 2UT. Roscoe
KurzbeschreibungIntroduction to systems programming. C and assembly language,
floating point arithmetic, basic translation of C into assembler,
compiler optimizations, manual optimizations. How hardware features
like superscalar architecture, exceptions and interrupts, caches,
virtual memory, multicore processors, devices, and memory systems
function and affect correctness, performance, and optimization.
LernzielThe course objectives are for students to:

1. Develop a deep understanding of, and intuition about, the execution
of all the layers (compiler, runtime, OS, etc.) between programs in
high-level languages and the underlying hardware: the impact of
compiler decisions, the role of the operating system, the effects
of hardware on code performance and scalability, etc.

2. Be able to write correct, efficient programs on modern hardware,
not only in C but high-level languages as well.

3. Understand Systems Programming as a complement to other disciplines
within Computer Science and other forms of software development.

This course does not cover how to design or build a processor or
computer.
InhaltThis course provides an overview of "computers" as a
platform for the execution of (compiled) computer programs. This
course provides a programmer's view of how computer systems execute
programs, store information, and communicate. The course introduces
the major computer architecture structures that have direct influence
on the execution of programs (processors with registers, caches, other
levels of the memory hierarchy, supervisor/kernel mode, and I/O
structures) and covers implementation and representation issues only
to the extend that they are necessary to understand the structure and
operation of a computer system.

The course attempts to expose students to the practical issues that
affect performance, portability, security, robustness, and
extensibility. This course provides a foundation for subsequent
courses on operating systems, networks, compilers and many other
courses that require an understanding of the system-level
issues. Topics covered include: machine-level code and its generation
by optimizing compilers, address translation, input and output,
trap/event handlers, performance evaluation and optimization (with a
focus on the practical aspects of data collection and analysis).
Skript- C programmnig
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices
LiteraturThe course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material.
Voraussetzungen / Besonderes252-0029-00L Parallel Programming
252-0028-00L Design of Digital Circuits
Block G3
Die Lehrveranstaltungen von Block G3 finden im Frühjahrssemester statt.
Block G4
Die Lehrveranstaltungen von Block G4 finden im Frühjahrssemester statt.
Kernfächer aus dem Bereich I (Module)
Modul A
NummerTitelTypECTSUmfangDozierende
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 KP4GP. Koumoutsakos
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
LernzielWith manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
Inhalt1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods
Skripthttps://www.cse-lab.ethz.ch/teaching/hpcse-i_hs19/
Class notes, handouts
Literatur• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes
Voraussetzungen / BesonderesStudents should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.
Modul B
NummerTitelTypECTSUmfangDozierende
263-2800-00LDesign of Parallel and High-Performance Computing Information Belegung eingeschränkt - Details anzeigen W8 KP3V + 2U + 2AM. Püschel, T. Ben Nun
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
Kernfächer aus dem Bereich II
Kein Angebot im HS
Bachelor-Arbeit
Wenn Sie anstelle von 401-2000-00L Scientific Works in Mathematics die Lerneinheit 402-2000-00L Scientific Works in Physics anrechnen lassen möchten (dies ist erlaubt im Studiengang Rechnergestützte Wissenschaften), so wenden Sie sich nach dem Verfügen des Resultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat).
NummerTitelTypECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.
O0 KPÖ. Imamoglu
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
Voraussetzungen / BesonderesWeisung Link
401-2000-01LLunch Sessions – Thesis Basics für Mathematik-Studierende
Für Details und zur Registrierung für den freiwilligen MathBib-Schulungskurs: https://www.math.ethz.ch/mathbib-schulungen
Z0 KPReferent/innen
KurzbeschreibungFreiwilliger MathBib-Schulungskurs
Lernziel
402-2000-00LScientific Works in Physics
Zielpublikum:
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.

Weisung Link
W0 KPC. Grab
KurzbeschreibungLiterature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.
LernzielBasic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.
401-3990-18LBachelor-Arbeit Belegung eingeschränkt - Details anzeigen
Nur für Rechnergestützte Wissenschaften BSc, Studienreglement 2018.

Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter www.math.ethz.ch/intranet/students/study-administration/theses.html
O14 KP30DBetreuer/innen
KurzbeschreibungDie Bachelor-Arbeit bildet den Abschluss des Studiengangs. Sie soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen in einer bestehenden wissenschaftlichen Gruppe rechnergestützt anzugehen. Die Bachelor-Arbeit umfasst ca. 160 Stunden.
LernzielDie Bachelorarbeit soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen rechnergestützt anzugehen. Andererseits soll auch gelernt werden, in einer bestehenden wissenschaftlichen Gruppe mitzuarbeiten.
Voraussetzungen / BesonderesDer verantwortliche Leiter der Bachelorarbeit definiert die Aufgabenstellung und legt den Beginn der Bachelorarbeit und den Abgabetermin fest. Die Bachelorarbeit wird mit einem schriftlichen Bericht abgeschlossen. Die Leistung wird mit einer Note bewertet.
Bachelor-Studium (Studienreglement 2012 und 2016)
Grundlagenfächer
Block G1 (Studienreglement 2012 und 2016)
NummerTitelTypECTSUmfangDozierende
401-0353-00LAnalysis 3 Information O4 KP2V + 2UM. Iacobelli
KurzbeschreibungIn this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.
LernzielThe aim of this class is to provide students with a general overview of first and second order PDEs, and teach them how to solve some of these equations using characteristics and/or separation of variables.
Inhalt1.) General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)

2.) Quasilinear first order PDEs
- Solution with the method of characteristics
- COnservation laws

3.) Hyperbolic PDEs
- wave equation
- d'Alembert formula in (1+1)-dimensions
- method of separation of variables

4.) Parabolic PDEs
- heat equation
- maximum principle
- method of separation of variables

5.) Elliptic PDEs
- Laplace equation
- maximum principle
- method of separation of variables
- variational method
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)
Voraussetzungen / BesonderesPrerequisites: Analysis I and II, Fourier series (Complex Analysis)
402-0811-00LProgramming Techniques for Scientific Simulations IO5 KP4GR. Käppeli
KurzbeschreibungThis lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Lernziel
401-0663-00LNumerical Methods for CSEO8 KP4V + 2U + 1PR. Hiptmair
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt* Computing with Matrices and Vectors
* Direct Methods for linear systems of equations
* Least Squares Techniques
* Data Interpolation and Fitting
[ Filtering Algorithms, optional]
* Approximation of Functions
* Numerical Quadrature
* Iterative Methods for non-linear systems of equations
* Single Step Methods for ODEs
* Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to the participants through the course web page, whose address will be announced in the beginning of the course.
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

W. Gander, M.J. Gander, and F. Kwok "Scientific Computing", Springer 2014.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
Block G2 (Studienreglement 2012 und 2016)
252-0834-00L Information Systems for Engineers wird neu im Frühjahrssemester angeboten.
NummerTitelTypECTSUmfangDozierende
401-0603-00LStochastik Information Belegung eingeschränkt - Details anzeigen O4 KP2V + 1UC. Czichowsky
KurzbeschreibungDie Vorlesung deckt folgende Themenbereiche ab: Zufallsvariablen, Wahrscheinlichkeit und Wahrscheinlichkeitsverteilungen, gemeinsame und bedingte Wahrscheinlichkeiten und Verteilungen, das Gesetz der Grossen Zahlen, der zentrale Grenzwertsatz, deskriptive Statistik, schliessende Statistik, Statistik bei normalverteilten Daten, Punktschätzungen, und Vergleich zweier Stichproben.
LernzielKenntnis der Grundlagen der Wahrscheinlichkeitstheorie und Statistik.
InhaltEinführung in die Wahrscheinlichkeitstheorie, einige Grundbegriffe der mathematischen Statistik und Methoden der angewandten Statistik.
SkriptVorlesungsskript
LiteraturVorlesungsskript
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle