Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Frühjahrssemester 2019

Maschineningenieurwissenschaften Bachelor Information
6. Semester
Fokus-Vertiefung
Mechatronics
Fokus-Koordinator: Prof. Bradley Nelson
Für die erforderlichen 20 KP der Fokus-Vertiefung Mechatronics ist 151-0640-00L Studies on Mechatronics obligatorisch.
Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
151-0640-00LStudies on Mechatronics
Dieser Kurs steht für Austauschstudierende nicht zur Verfügung.
O5 KP5ABetreuer/innen
KurzbeschreibungOverview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences.
LernzielThe goal of this class is to familiarize the students with this fascinating but rapidly evolving engineering discipline. The students learn to find, read and critically evaluate the pertinent literature and methods through in depth studying, presenting, debating of and writing about selected topics or case studies addressing mechatronics engineering.
InhaltOverview of Mechatronics topics and study subjects. Identification of minimum ten pertinent refereed articles or works in the literature in consultation with supervisor orinstructor. After four weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After detailed feedback on the substance and technical writing on the proposal by the instructor, project commences. Three to four weeks prior to the end of the semester, a 15 minute oral progress report (presentation) is given by the student that is critiqued by the instructor with detailed comments on substance and effectiveness of lecture and response on questions from audience. At the last day of the semester the student submits a written report that is no longer than 10-pages text following the format of a representative journal article. Throughout the semester the student attends and actively participates in the interactive class lectures given in the form of seminars and debates with active question and answer sessions inviting student and instructor participation.
LiteraturWill be available.
Voraussetzungen / BesonderesLanguage: English or German - depending on the lecturer.
Wählbare Fächer
NummerTitelTypECTSUmfangDozierende
151-0206-00LEnergy Systems and Power EngineeringW4 KP2V + 2UR. S. Abhari, A. Steinfeld
KurzbeschreibungIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
LernzielIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
InhaltWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology.
SkriptVorlesungsunterlagen werden verteilt
151-0516-00LNicht-glatte DynamikW5 KP5GC. Glocker
KurzbeschreibungUngleichungsprobleme in der Dynamik, speziell Reib- und Stoßprobleme mit Geschwindigkeits- und Beschleunigungssprüngen. Modellierung von einseitigen Kontakten, Reibung, Freiläufen, vorgespannten Federn. Formulierung über mengenwertige Funktionen als lineare Komplementaritätsprobleme. Numerische Zeitintegration des kombinierten Reib-Stoss-Kontaktproblems.
LernzielDie Vorlesung vermittelt den Studierenden einen Einstieg in die moderne Behandlung von Ungleichungsproblemen in der Dynamik. Der Vorlesungsstoff ist speziell auf reibungsbehaftete Kontakte in der Mechanik zugeschnitten, läßt sich aber strukturell auf eine große Klasse von Ungleichungsproblemen in den technischen Wissenschaften übertragen. Ziel der Veranstaltung ist es, die Studierenden mit einer konsistenten Erweiterung der klassischen Mechanik auf Systeme mit Unstetigkeiten vertraut zu machen, und den Umgang mit Ungleichungen in der Form von mengenwertigen Stoffgesetzen zu erlernen.
Inhalt1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
SkriptEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Voraussetzungen / BesonderesKinematik und Statik & Dynamics
151-0540-00LExperimentelle MechanikW4 KP2V + 1UJ. Dual
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-0630-00LNanorobotics Information W4 KP2V + 1US. Pané Vidal
KurzbeschreibungNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
LernzielThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0641-00LIntroduction to Robotics and Mechatronics Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 60.

Enrollment is only valid through registration on the MSRL website (www.msrl.ethz.ch). Online registrations begin on the 1st of February 2019. Registrations per e-mail is no longer accepted!
W4 KP2V + 2UB. Nelson, N. Shamsudhin
KurzbeschreibungThe aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use.
LernzielAn ever-increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices.

The aim of this course is to practically and theoretically expose students to the fundamentals of mechatronic and robotic systems. Over the course of the semester, the lecture topics will include an overview of robotics, an introduction to different types of sensors and their use, the programming of microcontrollers and interfacing these embedded computers with the real world, signal filtering and processing, an introduction to different types of actuators and their use, an overview of computer vision, and forward and inverse kinematics. Throughout the course, students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. By the end of the course, you will be able to independently choose, design and integrate these different building blocks into a working mechatronic system.
InhaltThe course consists of weekly lectures and lab sessions. The weekly topics are the following:
0. Course Introduction
1. C Programming
2. Sensors
3. Data Acquisition
4. Signal Processing
5. Digital Filtering
6. Actuators
7. Computer Vision and Kinematics
8. Modeling and Control
9. Review and Outlook

The lecture schedule can be found on our course page on the MSRL website (www.msrl.ethz.ch)
Voraussetzungen / BesonderesThe students are expected to be familiar with C programming.
151-1224-00LÖlhydraulik und PneumatikW4 KP2V + 2UJ.  Lodewyks
KurzbeschreibungVermittlung der physikalischen und technischen Grundlagen ölhydraulischer und pneumatischer Systeme und ihrer Bauelemente wie Pumpen, Motoren, Zylinder und Ventile, mit Schwergewicht auf der Servo- und Proportionaltechnik und der Regelung fluidischer Antriebe. Überblick über Anwendungsbeispielen aus dem Maschinenbau.
LernzielDer Student
- kann die Funktionsweise eines ölhydraulischen oder pneumatischen Systems interpretieren und kann einfache Schaltungen entwerfen
- kann den Aufbau und die Funktionsweise der Bauelemente erklären und kann sie nach Anforderungen dimensionieren und auswählen
- kann das dynamische Verhalten eines servohydraulischen Zylinder- antriebes simulieren und kann eine optimale Zustandsregelung mit Beobachter auslegen.
InhaltBedeutung der Oelhydraulik und Pneumatik, Begriffe, Anwendungsbeispiele,
Repetitorium der wichtigsten strömungstechnischen Grundlagen u.a. Kompressibilität eines Fluides, Durchfluss durch Drosseln und Spalten und Reibungsverluste in Leitungen.
Aufbau und Elemente hydraulischer und pneumatischer Anlagen, Funktion und Bauformen von Pumpen, Motoren und Zylinder, Druck-, Mengen-, Sperr-, Wege-, Proportional- und Servoventile,
Grundschaltungen hydraulischer und pneumatischer Systeme.
Dynamisches Verhalten und Zustandsregelung hydraulischer und pneumatischer Servoantriebe.
Übungen
Rechenübungen zur Auslegung fluidischer Antriebe
Aufnahme der Kennlinien von Drosseln, Ventilen und Pumpen
Aufbau eines pneumatisch gesteuerten Antriebes
Simulation und experimentelle Untersuchung eines zustandsgeregelten servohydraulischen Zylinderantriebes.
SkriptAutographie Oelhydraulik
Manuskript Zustandsregelung eines Servohydraulischen Zylinderantriebes
Manuskript Elemente einer Druckluftversorgung
Manuskript Modellierung eines Servopneumatischen Zylinderantriebes
Voraussetzungen / BesonderesDie Vorlesung eignet sich für Studierende ab dem 5. Semester.
227-0124-00LEmbedded Systems Information W6 KP4GL. Thiele
KurzbeschreibungAn embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.
LernzielUnderstanding specific requirements and problems arising in embedded system applications.

Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.

Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment.
InhaltAn embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices.

The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.

Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.

More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html .
SkriptThe following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html .
LiteraturP. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018.

G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011.

Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016.
Voraussetzungen / BesonderesPrerequisites: Basic knowledge in computer architectures and programming.
227-0516-01LElektrische Antriebssysteme I
Dieser Kurs wird ab Herbstsemester 2019 durch 227-0517-10L "Fundamentals of Electric Machines" ersetzt.
W6 KP4GP. Steimer, A. Omlin, C. A. Stulz
KurzbeschreibungIn Antriebssysteme I wird ein komplettes elektrisches Antriebssystem mit seinen Hauptkomponenten untersucht. Dazu gehören die elektrische Maschine, die Leistungshalbleiter, der Leistungsteil des Umrichters und die Regelung des gesamten Antriebssystems. Bei den Maschinen liegt das Schwergewicht auf der heute weit verbreiteten Asynchronmaschine, aber auch andere Antriebskonzepte werden behandelt.
LernzielDie Studierenden verstehen ein komplettes Antriebssystem mit seinen Hauptkomponenten wie elektrische Maschine, Leistungsteil des Umrichters und dazugehörige Regelung.
InhaltRepetition der Grundlagen (Mechanik, Magnetkreis); Drehfeldmaschinen (Asynchronmaschine und Synchronmaschine, stationäre und dynamsiche Betrachtung); Gleichstrommaschinen (inkl. Universalmotor); Leistungshalbleiter; Umrichtertopologien; Pulsmustererzeugung; Regelung (z.B. feldorientierte Regelung).
SkriptSkript wird abgegegeben (elektronisch)
Voraussetzungen / BesonderesVoraussetzung: Kenntnisse die im Fach "Leistungselektronik" (HS) vermittelt werden.
151-0135-00LErgänzendes Projekt für die Fokus-Vertiefung Belegung eingeschränkt - Details anzeigen
Nur für D-MAVT Bachelor-Studierende der Fokusvertiefung.
Für die Belegung der Lerneinheit kontaktieren Sie bitte die D-MAVT Studienadministration.
W1 KP2AProfessor/innen
KurzbeschreibungSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
LernzielSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
  •  Seite  1  von  1