Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2019

Mathematik Master Information
Wahlfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der reinen Mathematik
Auswahl: Algebra, Zahlentheorie, Topologie, diskrete Mathematik, Logik
NummerTitelTypECTSUmfangDozierende
401-3033-00LDie Gödel'schen SätzeW8 KP3V + 1UL. Halbeisen
KurzbeschreibungDie Vorlesung besteht aus drei Teilen:
Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.
Teil II behandelt den Gödel'schen Vollständigkeitssatz
Teil III behandelt die Gödel'schen Unvollständigkeitssätze
LernzielDas Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.
InhaltSyntax und Semantik der Prädikatenlogik
Gödel'scher Vollständigkeitssatz
Gödel'sche Unvollständigkeitssätze
LiteraturErgänzende Literatur wird in der Vorlesung angegeben.
401-4037-69LO-Minimality and Diophantine ApplicationsW4 KP2VA. Forey
KurzbeschreibungO-minimal structures provide a framework for tame topology as envisioned by Grothendieck. Originally it was mainly a topic of interest for real algebraic geometers. However, since Pila and Wilkie proved their counting theorem for rational points of bounded height, many applications to diophantine and algebraic geometry have been found.
LernzielThe overall goal of this course is to provide an introduction to o-minimality and to prove results needed for diophantine applications.
InhaltThe first part of the course will be devoted to the definition of o-minimal structures and to prove the cell decomposition theorem, which is crucial for describing the shape of subsets of an o-minimal structure. In the second part of the course, we will prove the Pila-Wilkie counting theorem. The last part will be devoted to diophantine applications, with the proof by Pila and Zanier of the Manin-Mumford conjecture and, if time permit, a sketch of the proof by Pila of the André-Oort conjecture for product of modular curves.
LiteraturG. Jones and A. Wilkie: O-minimality and diophantine geometry, Cambridge University Press
L. van den Dries: Tame topology and o-minimal structures, Cambridge University Press
Voraussetzungen / BesonderesThis course is appropriate for people with basic knowledge of commutative algebra and algebraic geometry. Knowledge of mathematical logic is welcomed but not required.
401-4117-69Lp-Adic Galois RepresentationsW4 KP2VM. Mornev
KurzbeschreibungThis course covers the structure theory of Galois groups of local fields, the rings of Witt vectors, the classification of p-adic representations via phi-modules, the tilting construction from the theory of perfectoid spaces, the ring of de Rham periods and the notion of a de Rham representation.
LernzielUnderstanding the construction of the ring of de Rham periods.
InhaltIn addition to the subjects mentioned in the abstract the course included the basic theory of local fields, l-adic local Galois representations, an oveview of perfectoid fields, the statements of the theorems of Fontaine-Winterberger and Faltings-Tsuji.
LiteraturJ.-M. Fontaine, Y. Ouyang. Theory of p-adic Galois representations.
O. Brinon, B. Conrad. CMI summer school notes on p-adic Hodge theory.
Voraussetzungen / BesonderesGeneral topology, linear algebra, Galois theory.
401-3059-00LKombinatorik IIW4 KP2GN. Hungerbühler
KurzbeschreibungDer Kurs Kombinatorik I und II ist eine Einführung in die abzählende Kombinatorik.
LernzielDie Studierenden sind in der Lage, kombinatorische Probleme einzuordnen und die adaequaten Techniken zu deren Loesung anzuwenden.
InhaltInhalt der Vorlesungen Kombinatorik I und II: Kongruenztransformationen der Ebene, Symmetriegruppen von geometrischen Figuren, Eulersche Funktion, Cayley-Graphen, formale Potenzreihen, Permutationsgruppen, Zyklen, Lemma von Burnside, Zyklenzeiger, Saetze von Polya, Anwendung auf die Graphentheorie und isomere Molekuele.
Auswahl: Geometrie
NummerTitelTypECTSUmfangDozierende
401-4531-69LFour-ManifoldsW4 KP2VG. Smirnov
KurzbeschreibungMaking use of theoretical physics methods, Witten came up with a novel approach to four-dimensional smooth structures, which made the constructing of exotic 4-manifolds somewhat routine. Today, Seiberg-Witten theory has become a classical topic in mathematics, which has a variety of applications to complex and symplectic geometry. We will go through some of these applications.
LernzielThis introductory course has but one goal, namely to familiarize the students with the basics in the Seiberg-Witten theory.
InhaltThe course will begin with an introduction to Freedman’s classification theorem for simply-connected topological 4-manifolds. We then will move to the Seiberg-Witten equations and prove the Donaldson theorem of positive-definite intersection forms. Time permitting we may discuss some applications of SW-theory to real symplectic 4-manifolds.
Voraussetzungen / BesonderesSome knowledge of homology, homotopy, vector bundles, moduli spaces of something, elliptic operators would be an advantage.
401-3057-00LEndliche Geometrien II
Findet dieses Semester nicht statt.
W4 KP2GN. Hungerbühler
KurzbeschreibungEndliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate.
LernzielEndliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne.
InhaltEndliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne
Literatur- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
Auswahl: Analysis
NummerTitelTypECTSUmfangDozierende
401-4351-69LOptimal TransportW4 KP2VA. Figalli
KurzbeschreibungIn this course I plan to give an introduction to optimal transport: I'll first introduce the optimal transport problem and explain how to solve it in some important cases of interest. Then I'll show a series of applications to geometry and to gradient flows.
LernzielThe aim of the course is to provide a self contained introduction to optimal transport. The students are expected to know the basic concepts of measure theory. Although not strictly required, some basic knowledge of Riemannian geometry may be useful.
LiteraturTopics in Optimal Transportation (Graduate Studies in Mathematics, Vol. 58), by Cédric Villani

Optimal Transport for Applied Mathematicians (Calculus of Variations, PDEs, and Modeling), by Filippo Santambrogio

Optimal transport and curvature, available at
Link
401-4461-69LReading Course: Functional Analysis III, Unitary Representations
Limited number of participants.
Please contact andreas.wieser@math.ethz.ch
W3 KP6AM. Einsiedler, weitere Referent/innen
Kurzbeschreibung
Lernziel
Auswahl: Weitere Gebiete
NummerTitelTypECTSUmfangDozierende
401-3502-69LReading Course Belegung eingeschränkt - Details anzeigen
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W2 KP4ABetreuer/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
401-3503-69LReading Course Belegung eingeschränkt - Details anzeigen
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W3 KP6ABetreuer/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
401-3504-69LReading Course Belegung eingeschränkt - Details anzeigen
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W4 KP9ABetreuer/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
401-0000-00LCommunication in MathematicsW2 KP1VW. Merry
KurzbeschreibungDon't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.
LernzielKnowing how to present written mathematics in a structured and clear manner.
InhaltTopics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.
SkriptFull lecture notes will be made available on my website:

https://www.merry.io/teaching/
Voraussetzungen / BesonderesThere are no formal mathematical prerequisites.
401-0000-99LCommunication in Mathematics (Upgrade 2018 → 2019)
This course unit is only for students who got 1 ECTS credit from last year's course unit 401-0000-00L CiM. (Registration now closed.)
W1 KP1VW. Merry
KurzbeschreibungDon't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.
LernzielKnowing how to present written mathematics in a structured and clear manner.
InhaltTopics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.
SkriptFull lecture notes will be made available on my website:

https://www.merry.io/teaching/
Voraussetzungen / BesonderesThere are no formal mathematical prerequisites.
Wahlfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Wahlfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
Auswahl: Numerische Mathematik
NummerTitelTypECTSUmfangDozierende
401-4657-00LNumerical Analysis of Stochastic Ordinary Differential Equations Information
Alternative course title: "Computational Methods for Quantitative Finance: Monte Carlo and Sampling Methods"
W6 KP3V + 1UK. Kirchner
KurzbeschreibungCourse on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.
LernzielThe aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this the course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.
InhaltGeneration of random numbers
Monte Carlo methods for the numerical integration of random variables
Stochastic processes and Brownian motion
Stochastic ordinary differential equations (SODEs)
Numerical approximations of SODEs
Applications to computational finance: Option valuation
SkriptThere will be English, typed lecture notes for registered participants in the course.
LiteraturP. Glassermann:
Monte Carlo Methods in Financial Engineering.
Springer-Verlag, New York, 2004.

P. E. Kloeden and E. Platen:
Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Berlin, 1992.
Voraussetzungen / BesonderesPrerequisites:

Mandatory: Probability and measure theory,
basic numerical analysis and
basics of MATLAB programming.

a) mandatory courses:
Elementary Probability,
Probability Theory I.

b) recommended courses:
Stochastic Processes.

Start of lectures: Wednesday, September 18, 2019.
401-4785-00LMathematical and Computational Methods in PhotonicsW8 KP4GH. Ammari
KurzbeschreibungThe aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces
LernzielThe field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications.

The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength.

Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare. Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing prevention along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures.

The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The book merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions.

In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials.
Auswahl: Wahrscheinlichkeitstheorie, Statistik
NummerTitelTypECTSUmfangDozierende
401-4597-67LRandom Walks on Transitive Graphs Information W4 KP2VV. Tassion
KurzbeschreibungIn this course, we will present modern topics at the interface between probability and geometric group theory. We will be mainly focused on the random walk, and discuss its behavior depending on the geometric properties of the underlying graph.
Lernziel
Voraussetzungen / Besonderes- Probability Theory.
- Basic properties of Markov Chains.
- No prerequisite on group theory, all the background will be introduced in class.
401-4619-67LAdvanced Topics in Computational Statistics
Findet dieses Semester nicht statt.
W4 KP2Vkeine Angaben
KurzbeschreibungThis lecture covers selected advanced topics in computational statistics. This year the focus will be on graphical modelling.
LernzielStudents learn the theoretical foundations of the selected methods, as well as practical skills to apply these methods and to interpret their outcomes.
InhaltThe main focus will be on graphical models in various forms:
Markov properties of undirected graphs; Belief propagation; Hidden Markov Models; Structure estimation and parameter estimation; inference for high-dimensional data; causal graphical models
Voraussetzungen / BesonderesWe assume a solid background in mathematics, an introductory lecture in probability and statistics, and at least one more advanced course in statistics.
401-3628-14LBayesian StatisticsW4 KP2VF. Sigrist
KurzbeschreibungIntroduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.
LernzielStudents understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.
InhaltTopics that we will discuss are:

Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression),hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods)
SkriptA script will be available in English.
LiteraturChristian Robert, The Bayesian Choice, 2nd edition, Springer 2007.

A. Gelman et al., Bayesian Data Analysis, 3rd edition, Chapman & Hall (2013).

Additional references will be given in the course.
Voraussetzungen / BesonderesFamiliarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.
401-3619-69LMathematics Tools in Machine LearningW4 KP2GF. Balabdaoui
KurzbeschreibungThe course reviews many essential mathematical tools used in statistical learning. The lectures will cover the notions of hypotheses classes, sample complexity, PAC learnability, model validation and selection as well as results on several well-known algorithms and their convergence.
LernzielIn the exploding world of artifical intelligence and automated learning, there is an urgent need to go back to the basis of what is driving many of the well-establsihed methods in statistical learning. The students attending the lectures will get acquainted with the main theoretical results needed to establish the theory of statistical learning. We start with defining what is meant by learning a task, a training sample, the trade-off between choosing a big class of functions (hypotheses) to learn the task and the difficulty of estimating the unknown function (generating the observed sample). The course will also cover the notion of learnability and the conditions under which it is possible to learn a task. In a second part, the lectures will cover algoritmic apsects where some well-known algorithms will be described and their convergence proved.

Through the exerices classes, the students will deepen their understanding using their knowledge of the learned theory on some new situations, examples or some counterexamples.
InhaltThe course will cover the following subjects:

(*) Definition of Learning and Formal Learning Models

(*) Uniform Convergence

(*) Linear Predictors

(*) The Bias-Complexity Trade-off

(*) VC-classes and the VC dimension

(*) Model Selection and Validation

(*) Convex Learning Problems

(*) Regularization and Stability

(*) Stochastic Gradient Descent

(*) Support Vector Machines

(*) Kernels
LiteraturThe course will be based on the book

"Understanding Machine Learning: From Theory to Algorithms"
by S. Shalev-Shwartz and S. Ben-David, which is available online through the ETH electronic library.

Other good sources can be also read. This includes

(*) the book "Neural Network Learning: Theoretical Foundations" de Martin Anthony and Peter L. Bartlett. This book can be borrowed from the ETH library.

(*) the lectures notes on "Mathematics of Machine Learning" taught by Philippe Rigollet available through the OpenCourseWare website of MIT
Voraussetzungen / BesonderesBeing able to follow the lectures requires a solid background in Probability Theory and Mathematical Statistical. Notions in computations, convergence of algorithms can be helpful but are not required.
401-0625-01LApplied Analysis of Variance and Experimental Design Information W5 KP2V + 1UL. Meier
KurzbeschreibungPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LernzielParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
InhaltPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LiteraturG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
  •  Seite  1  von  3 Nächste Seite Letzte Seite     Alle