Search result: Catalogue data in Autumn Semester 2021

Civil Engineering Master Information
Master Studies (Programme Regulations 2020)
1. Semester
Major Courses
Major in Construction and Maintenance Management
NumberTitleTypeECTSHoursLecturers
151-8011-00LBuilding Physics: Theory and Applications Information Restricted registration - show details
Enrolment after agreement with the lecturer only.
W4 credits3V + 1UA. Kubilay, X. Zhou, L. D'Amato, A. Rubin, D. A. Strebel
AbstractPrinciples of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications.
ObjectiveThe students will acquire in the following fields:
- Principles of heat and mass transport and its mathematical description.
- Indoor and outdoor climate and driving forces.
- Hygrothermal properties of building materials.
- Building envelope solutions and their construction.
- Hygrothermal performance and durability.
ContentPrinciples of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications.
Lecture notesHandouts, supporting material and exercises are provided online via Moodle.
066-0427-00LDesign and Building Process MIBS Information
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: Link
W2 credits2VA. Paulus
Abstract"Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in a increasingly specialised, complex and international surrounding.
ObjectiveParticipants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties' minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients' wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship.
Content"Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Twelve compact aspects regarding the establishe building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the proveded services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the prctice: Teaching-based case studies will compliment and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for invididual input: active cololaboration between the students and their tutor therefore required.
Lecture notesThe recordings of the lectures are available on the MAP under the link Link (book symbol at the top right).
LiteratureLink
Prerequisites / NoticeITA Pool - information event on the courses offered at the institute ITA: Wednesday 7th September 2022, 10-11 h, ONLINE.
101-0427-01LPublic Transport Design and OperationsW6 credits4GF. Corman, F. Leutwiler
AbstractThis course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.
ObjectivePublic transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks.
Their various performance criteria based on various perspective and stakeholders.
The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies,
system design and line planning for different situations,
mathematical models for design and line planning
timetabling and tactical planning, and related mathematical approaches
operations, and quantitative support to operational problems,
evaluation of public transport systems.
ContentBasics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport

Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles

Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services
Lecture notesLecture slides are provided.
LiteratureCeder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch)

Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English)

Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English)

Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English)

White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0509-00LInfrastructure Management 1: ProcessO6 credits3GB. T. Adey
AbstractInfrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.
ObjectiveThere are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will
• understand the main tasks of an infrastructure manager and the complexity of these tasks,
• understand the importance of setting goals and constraints in the management of infrastructure,
• be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
• be able to develop and evaluate simple management strategies for individual infrastructure assets,
• be able to develop and evaluate intervention programs that are aligned with their strategies,
• understand the principles of guiding projects and evaluating the success of projects,
• be able to formally model infrastructure management processes, and
• understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
ContentThe weekly lectures are structured as follows:
1 Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.
2 Positioning infrastructure management in society: As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.
3 Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.
4 Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.
5 Help session 1
6 Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.
7 Determining and justifying monitoring - Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.
8 Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.
9 Help session 2
10 Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.
11 Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.
12 Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.
13 Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.
14 Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.
Lecture notes• The lecture materials consist of handouts, the slides, and example calculations in Excel.
• The lecture materials will be distributed via Moodle two days before each lecture.
LiteratureAppropriate literature will be handed out when required via Moodle.
Prerequisites / NoticeThis course has no prerequisites.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0517-10LConstruction Management for TunnelingW3 credits2GH. Ehrbar
Abstract- Construction methods for conventional tunneling in loose material and in hard rock conditions (tunnel, shaft and cavern construction)
- Construction methods for mechanical excavation
- Decision criteria for the selection of tunneling method
- Construction facilities, logistics and construction management
ObjectiveTransfer of practical knowledge regarding
- Selection of tunneling methods
- Execution and working cycles in conventional and mechanical tunneling
- Management of the muck and of materials
- Quality control and monitoring during construction
- Occupational health and safety requirements and environmental requirements
- Maintenance
The students will be enabled to work on an underground construction project in the preliminary and final design phase as a planner (taking into account contractor's considerations).
Contentgeneral basics
- Codes SIA 196, SIA 197, SIA 198, SIA 118/198
- Knowledge of the tunneling methods
- Decision-making principles for the selection of the tunneling method
- Construction site logistics (transport, ventilation, cooling, water, material management)
- Construction materials

Conventional tunneling
- Excavation methods (full breakout / partial breakout)
- rock support
- Impermeabilisation
- Inner lining

Mechanical tunneling
- Open TBM (Gripper TBM), rock support concepts
- Shield TBM's in rock and loose ground

Inner lining
- Impermeabilisation and drainage
- Inner lining
- Cable ducts
Lecture notesCharts of the lecture and references
LiteratureReferences to the usual specialist literature will be made in the course of the lecture
101-0524-00LLean, Integrated and Digital Project DeliveryW4 credits3GD. Hall
AbstractThis course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.
ObjectiveBy the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project.
Students will know they are able to achieve this overall course goal when they can:
1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contributes to work-in-process and 'waste'; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning.
2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms
3. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling
4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the 'elements' of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making)
ContentThe construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects.
HP buildings require the integration of building systems. However, the traditional methods of planning and construction do not use an integrated approach. Project fragmentation between many stakeholders is often cited as the cause of poor project outcomes and the reason for poor productivity gains in the construction industry. In response, the construction industry has turned to new forms of integration in order to integrate the processes, organization, and information required for high performance projects.
This course investigates emerging trends in the construction industry – e.g. colocation, shared risk/reward contracts, lean construction methods, and use of shared building information models (BIM) for virtual design and construction (VDC) – as a way to achieve HP projects.
For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, takt time planning, production tracking, and target value design.
For integrated information, students will be introduced to the fundamentals of virtual design and construction, including how to use work breakdown structures and model breakdown structures for building information modeling, and the fundamentals and opportunities for 4D scheduling, clash detection, and “5D and 6D” models. Future technologies emerging to integrate information such as the use of Autodesk Forge will be presented. Students will have the opportunity to discuss barriers in the industry to more advanced implementation of BIM and VDC.
For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain ‘elements’ of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making.
The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice.
Lecture notesLecture Presentation slides will be available for viewing and download the day before each lecture.

The class will be presented in a "flipped classroom" environment where students will be required to do readings or watch video before class. In-class activities will act to reinforce and expand upon these primary concepts.

If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time.
LiteratureA full list of required readings will be made available to the students via Moodle
Prerequisites / NoticeProject Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesCritical Thinkingassessed
Self-direction and Self-management fostered
101-0577-00LAn Introduction to Sustainable Development in the Built EnvironmentO3 credits2GG. Habert, D. Kaushal
AbstractIn 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
in 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment
ObjectiveAt the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
ContentThe following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development
Lecture notesAll relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.
LiteratureA list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
Major in Geotechnical Engineering
NumberTitleTypeECTSHoursLecturers
101-0317-00LTunnelling IW+3 credits2GG. Anagnostou, E. Pimentel
AbstractBasic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement). Numerical analysis methods.
ObjectiveBasic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement). Numerical analysis methods.
ContentNumerical analysis methods in tunnelling.
Conventional excavation methods (full face, top heading and bench, side drift method, ...)
Auxiliary measures:
- Injections
- Jet grouting
- Ground freezing
- Drainage
- Forepoling
- Face reinforcement
Lecture notesAutographieblätter
LiteratureEmpfehlungen
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
101-0357-00LTheoretical and Experimental Soil Mechanics Restricted registration - show details
Prerequisites: Mechanics I, II and III.

The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received.
W+6 credits4GI. Anastasopoulos, R. Herzog, E. Korre, A. Marin, M. Schneider
AbstractOverview of soil behaviour
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory and typical applications in practice
Triaxial & direct shear tests: consolidation & shear, drained & undrained response
Plasticity theory & Critical State Soil Mechanics, Cam Clay
Application of plasticity theory
ObjectiveExtend knowledge of theoretical approaches that can be used to describe soil behaviour to enable students to carry out more advanced geotechnical design and to plan the appropriate laboratory tests to obtain relevant parameters for coupled plasticity models of soil behaviour.
A further goal is to give students the wherewithal to be able to select an appropriate constitutive model and set up insitu stress conditions in preparation for subsequent numerical modelling (e.g. with finite elements).
ContentOverview of soil behaviour
Discussion of general gaps between basic theory and soil response
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice
Triaxial & direct shear tests: consolidation & shear, drained & undrained response
Plasticity theory & Critical State Soil Mechanics, Cam Clay
Application of plasticity theory
Lecture notesPrinted script with web support
Exercises
LiteratureLink
Prerequisites / NoticeLectures will be conducted as Problem Based Learning within the framework of a case history
Virtual laboratory in support of 'hands-on' experience of selected laboratory tests

Pre-requirements: Basic knowledge in soil mechanics as well as knowledge of advanced mechanics
Laboratory equipment will be available for 60 students. First priority goes to those registered for the geotechnics specialty in the Masters, 2nd year students then first year students, doctoral students qualifying officially for their PhD status and then 'first come, first served'.
101-0307-00LDesign and Construction in Geotechnical Engineering Restricted registration - show details W4 credits3GI. Anastasopoulos, A. Marin
AbstractThis lecture deals with the practical application of the knowledge gained in the fundamental lectures from the Bachelor degree.
The basics of planing and design of geotechnical structures will be taught for the main topics geotechical engineers are faced to in practice.
ObjectiveTransfer of the fundamental knowledge taught in the Bachelor degree to practical application.
Ability to plan and design geotechnical structures based on the state of the art.
ContentIntroduction to Swisscode SIA
Foundations and settlements
Pile foundations
Excavations
Slopes
Soil nailing
Reinforced geosystems
Ground improvement
River levees
Lecture notesScript in the form of chapters and powerpoint overheads with web support (Link)
Exercises
LiteratureRelevant literature will be stated during the lectures
Prerequisites / NoticePre-condition: Successful examinations (pass) in the geotechnical studies (soil mechanics and ground engineering, each 5 credits) in the Bachelor degree of Civil Engineering (ETH), or equivalent for new students.

The lecture contains at least one presentation from practice.
101-0369-00LForensic Geotechnical Engineering Information Restricted registration - show details
Prerequisites: successful participation in "Geotechnical Engineering" (101-0315-00L) or an equivalent course.
W3 credits2GA. Puzrin
AbstractIn this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage.
ObjectiveIn this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage.
ContentFailure due to the loading history
Failure due to excessive settlements
Failure due to the leaning instability
Bearing capacity failure
Excavation failure
Failure in the creeping landslides
Failure evolution in submarine landslides
Construction in the landslide influence zone
Delayed failure in snow avalanches
Lecture notesLecture notes
Exercises
LiteraturePuzrin, A.M.; Alonso, E.E.; Pinyol, N.M.: Geomechanics of Failures. Springer, 2010.

Alonso, E.E.; Pinyol, N.M.; Puzrin, A.M.: Geomechanics of Failures. Advanced Topics. Springer, 2010

Lang, H.J; Huder, J; Amann, P.; Puzrin, A.M.: Bodenmechanik und Grundbau, Springer-Lehrbuch, 9. Auflage, 2010.
Prerequisites / NoticeThe course is given in the first MSc semester.
Prerequisite: Basic knowledge in Geotechnical Engineering (Course content of "Grundbau" or similar lecture).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0517-10LConstruction Management for TunnelingW3 credits2GH. Ehrbar
Abstract- Construction methods for conventional tunneling in loose material and in hard rock conditions (tunnel, shaft and cavern construction)
- Construction methods for mechanical excavation
- Decision criteria for the selection of tunneling method
- Construction facilities, logistics and construction management
ObjectiveTransfer of practical knowledge regarding
- Selection of tunneling methods
- Execution and working cycles in conventional and mechanical tunneling
- Management of the muck and of materials
- Quality control and monitoring during construction
- Occupational health and safety requirements and environmental requirements
- Maintenance
The students will be enabled to work on an underground construction project in the preliminary and final design phase as a planner (taking into account contractor's considerations).
Contentgeneral basics
- Codes SIA 196, SIA 197, SIA 198, SIA 118/198
- Knowledge of the tunneling methods
- Decision-making principles for the selection of the tunneling method
- Construction site logistics (transport, ventilation, cooling, water, material management)
- Construction materials

Conventional tunneling
- Excavation methods (full breakout / partial breakout)
- rock support
- Impermeabilisation
- Inner lining

Mechanical tunneling
- Open TBM (Gripper TBM), rock support concepts
- Shield TBM's in rock and loose ground

Inner lining
- Impermeabilisation and drainage
- Inner lining
- Cable ducts
Lecture notesCharts of the lecture and references
LiteratureReferences to the usual specialist literature will be made in the course of the lecture
Major in Structural Engineering
NumberTitleTypeECTSHoursLecturers
101-0117-00LTheory of Structures IIIO3 credits2GB. Stojadinovic
AbstractThis course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting.
ObjectiveAfter passing this course students will be able to:
1. Explain the equilibrium of continuous structural elements.
2. Formulate mechanical models of continuous prismatic structural elements.
3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements.
4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading.
5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions.
ContentThis is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures.
Lecture notesElectronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are streamed live and recorded on the ETH Video Portal.
LiteratureMarti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014

Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993.
Prerequisites / NoticeWorking knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
101-0127-00LAdvanced Structural Concrete Information O3 credits2GJ. Mata Falcón, W. Kaufmann
AbstractThis course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation.
ObjectiveEnhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software.
ContentFundamentals (structural analysis, theorems of limit analysis, applicability of limit analysis methods); shear walls and girders (stress fields and truss models, deformation capacity, membrane elements with yield conditions and load-deformation behaviour, computer-aided structural design); slabs (equilibrium solutions, yield conditions, shear and punching shear); fibre reinforced concrete (mechanical behaviour, applications); long term effects; fire behaviour.
Lecture notesLecture notes see: Link
LiteratureDeutsche Literatur:
Marti, P., Alvarez, M., Kaufmann, W. und Sigrist, V., "Tragverhalten von Stahlbeton", IBK Publikation SP-008, Sept. 1999, 301 pp.
Muttoni, A., Schwartz, J. und Thürlimann, B.,: "Bemessung von Betontragwerken mit Spannungsfeldern", Birkhäuser Verlag, Basel, 1997, 145 pp.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Sensitivity to Diversityfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
101-0137-00LSteel Structures III: Advanced Steel and Composite StructuresO3 credits2GA. Taras, U. Angst
AbstractExpand the theoretical background and practical knowledge in the design of steel and composite structures. Special composite construction and detailling: partial connection, serviceability. Fire design. Cold-formed steel design. Crane girders; masts; tanks & silos. Structural glazing and lightweight cable-supported structures.
ObjectiveIn Steel Structures III, students will deepen and expand their theoretical background and practical knowledge of the design and construction of steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. Students will learn how to solve complex structural engineering tasks in larger building projects, e.g. through the use and correct design of large-span slim-floor girders and ultra-slender composite columns, or the use of glazing and cable structures as principal load-carrying components. They learn how steel structures behave under fire conditions and how they can be protected and designed accordingly. Finally, students learn about the fundamental aspects governing the design of specialty steel structures, such as thin-walled cold-formed sections, crane girders, masts and storage tanks.

The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field.
ContentSteel Structures III provides in-depth theoretical background and practical knowledge on advanced design topics in steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. The course discusses the use and design of large-span slim-floor girders and ultra-slender composite columns, as well as the use of glazing and cable structures as principal load-carrying components. The design of steel structures under elevated temperatures (fire conditions) is treated, as well as special topics of design for serviceability. In addition, fundamental concepts of the design of cold-formed steel framed structures are discussed. Finally, the course will give an overview on the design of specialty steel structures, such as crane girders, masts and storage tanks.
Lecture notesSlides and lecture notes. Worked examples. Handouts and formula collections.
LiteratureStahlbaukalender (various editions), Ernst + Sohn, Berlin
Prerequisites / NoticePrerequisites: Steel Structures I and II
101-0187-00LStructural Reliability and Risk AnalysisW3 credits2GS. Marelli
AbstractStructural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.
ObjectiveThe goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.
ContentEngineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
Lecture notesSlides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.
LiteratureAng, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Prerequisites / NoticeBasic course on probability theory and statistics
101-0157-01LStructural Dynamics and Vibration ProblemsW3 credits2GM. Vassiliou, V. Ntertimanis
AbstractFundamentals of structural dynamics are presented. Computing the response of elastic single and multiple DOF structural systems subjected to harmonic, periodic, pulse, and impulse is discussed. Practical solutions to vibration problems in flexible structures under diverse excitations are developed.
ObjectiveAfter successful completion of this course the students will be able to:
1. Explain the dynamic equilibrium of structures under dynamic loading.
2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems.
3. Model structural systems using single-degree-of-freedom and multiple-degree-of-freedom models.
4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods.
5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading.
ContentThis is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented.
Lecture notesThe class will be taught mainly on the blackboard.

Accompanying electronic material will be uploaded to ILIAS and available through myStudies.

All the material can be found in Anil Chopra's comprehensive textbook given in the literature below.
LiteratureDynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 (Global Edition), ISBN-10: 9780273774242

Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995

Weber B., Tragwerksdynamik. Link .ETH Zürich, 2002.
Prerequisites / NoticeKnowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable.
151-8015-00LMoisture Transport in Porous Media Information W3 credits2GJ. Carmeliet, L. Fei, J. Huang, J. Zhao
AbstractMoisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media.
Objective- Basic knowledge of moisture transport and related degradation processes in porous materials
- Knowledge of experimental determination of moisture transport properties
- Knowledge of pore network model and application to two-phase invasion percolation simulation
- Application of knowledge to moisture transport in cracked materials and flow in deformable porous media
Content1. Introduction
Moisture damage: problem statement, durability
Applications: building materials, soil science, geoscience

2. Moisture transport: theory and application
Description of moisture transport
Determination of moisture transport properties
Liquid transport in cracked materials, flow and transport in deformable porous media

3. Pore network model: theory and application
Single- and two-phase pore network model: quasi-static and dynamic
Exercise on quasi-static two-phase pore network model: invasion pattern, capillary pressure curve
Application of pore network model in two-phase transport
Lecture notesHandouts, supporting material and exercises are provided online via Moodle.
LiteratureAll material is provided online via Moodle.
101-0167-01LFibre Composite Materials in Structural EngineeringW3 credits2GM. Motavalli
Abstract1) Lamina and Laminate Theory
2) FRP Manufacturing and Testing Methods
3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures
4) FRP Reinforced Concrete, All FRP Structures
5) Measurement Techniques and Structural Health Monitoring
ObjectiveAt the end of the course, you shall be able to

1) Design advanced FRP composites for your structures,

2) To consult owners and clients with necessray testing and SHM techniques for FRP structures,

3) Continue your education as a phd student in this field.
ContentFibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure.
Lecture notesPower Point Presentations available online at Link
Literature1) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994

2) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7

3) fib bulletin 19, Externally applied FRP reinforcement for concrete structures, technical report, 2019

4) SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und Architektenverein SIA.
Prerequisites / Notice1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including FRP Composites, Shape Memory Alloys, Timber Elements, Large Scale Testing of Structural Components
2) Working with Composite Materials in the Laboratory (application, testing, etc)
101-0637-01LTimber Structures I
Remark: Students in Civil Engineering must enrol this course as a year course Timber Structures I+II.
W3 credits2GA. Frangi, I. Burgert, G. Fink, R. Steiger
AbstractConceptual design, detailing and structural analysis of multi-storey timber buildings as well as timber roof structures and halls.
ObjectiveComprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing.
Conceptual design, detailing and structural analysis of multi-storey timber buildings as well as timber roof structures and halls.
ContentField of application of timber structures; Timber as building material (wood structure, physical and mechanical properties of wood and wood-based products); Durability; Principles of design and dimensioning; Connections (dowels, nails, screws, glued connections); Timber components and assemblies (mechanically jointed beams, trusses); Design and detaling of multi-storey timber buildings as well as timber roof structures and halls.
Lecture notesAutography Timber Structures
Copies of lecture slides
LiteratureTimber design tables HBT 1, Lignum
Swiss Standard SIA 265
Swiss Standard SIA 265/1
Eurocode 5
  •  Page  1  of  3 Next page Last page     All