Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2019

Bauingenieurwissenschaften Master Information
1. Semester
Vertiefungsfächer
Vertiefung in Konstruktion
NummerTitelTypECTSUmfangDozierende
101-0117-00LTheory of Structures IIIO3 KP2GB. Stojadinovic
KurzbeschreibungThis course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting.
LernzielAfter passing this course students will be able to:
1. Explain the equilibrium of continuous structural elements.
2. Formulate mechanical models of continuous prismatic structural elements.
3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements.
4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading.
5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions.
InhaltThis is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures.
SkriptLecture notes based on the lecture presentations. The lectures are recorded and available at the the ETHZ video portal.
LiteraturMarti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014

Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993.
Voraussetzungen / BesonderesWorking knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel.
101-0127-00LAdvanced Structural Concrete Information O3 KP2GW. Kaufmann, J. Mata Falcón
KurzbeschreibungThis course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation.
LernzielEnhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software.
InhaltFundamentals (structural analysis, theorems of limit analysis, applicability of limit analysis methods); shear walls and girders (stress fields and truss models, deformation capacity, membrane elements with yield conditions and load-deformation behaviour, computer-aided structural design); slabs (equilibrium solutions, yield conditions, shear and punching shear); fibre reinforced concrete (mechanical behaviour, applications); long term effects; fire behaviour.
SkriptLecture notes see: http://www.concrete.ethz.ch
LiteraturMarti, P., “Theory of Structures: Fundamentals, Framed Structures, Plates and Shells”, first edition, Wiley Ernst & Sohn, Berlin, 2013, 696 pp.
Nielsen, M.P., Hoang, L.C., “Limit Analysis and Concrete Plasticity”, third edition, CRC Press, Florida, 2010, 816 pp.
101-0137-00LStahlbau IIIO3 KP2GA. Taras, R. Bärtschi
KurzbeschreibungVertiefen/Erweitern der theoretischen Grundlagen und konstruktiven Belange unter Einbezug ausführungstechn. und wirtschaftl. Aspekte, wie konstr. Gestaltung/Bemessung von Kranbahnen. Verbundbauteile, Teilverbund, Gebrauchstauglichkeit. Brand/Brandschutz, Feuerwiderstandberechnungen, Stabilitätsprobleme. Profilbleche und Kaltprofile. Oberflächenschutz, Qualitätssicherung und Preisbildung.
LernzielVertiefen und Erweitern der theoretischen Grundlagen und konstruktiven Belange des Stahlbaus unter Einbezug ausführungstechnischer und wirtschaftlicher Aspekte.
InhaltKonstruktive Gestaltung und Bemessung von Kranbahnen. Verbundbauteile im Hochbau (Verbundträger, Verbundstützen, Verbundblechdecken), Teilverbund, Gebrauchstauglichkeit. Brandschutz: Brandschutzziele und -konzepte, die Einwirkung Brand, Feuerwiderstandberechnung von Stahl- und Verbundbauteilen. Ergänzungen zu Stabilitätsproblemen und nichtlinearer Berechnung. Profilbleche und Kaltprofile als Tragelemente, Konstruktion und Bemessung als Biege- resp. Schubelemente. Oberflächenschutz von Stahlbauteilen. Qualitätssicherung und Preisbildung.
SkriptAutographieblätter
Folienkopien
Literatur- Stahlbauhandbuch 1 und 2, Stahlbau-Verlags-GmbH, Köln
- Stahlbaukalender 2000, Ernst + Sohn, Berlin, 1999
Voraussetzungen / BesonderesVoraussetzungen: Stahlbau I und II
101-0187-00LStructural Reliability and Risk Analysis Information W3 KP2GS. Marelli
KurzbeschreibungStructural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.
LernzielThe goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.
InhaltEngineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
SkriptSlides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.
LiteraturAng, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Voraussetzungen / BesonderesBasic course on probability theory and statistics
101-0157-01LStructural Dynamics and Vibration ProblemsW3 KP2GM. Vassiliou, V. Ntertimanis
KurzbeschreibungFundamentals of structural dynamics are presented. Computing the response of elastic single and multiple DOF structural systems subjected to harmonic, periodic, pulse, and impulse is discussed. Practical solutions to vibration problems in flexible structures under diverse excitations are developed.
LernzielAfter successful completion of this course the students will be able to:
1. Explain the dynamic equilibrium of structures under dynamic loading.
2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems.
3. Model structural systems using single-degree-of-freedom and multiple-degree-of-freedom models.
4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods.
5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading.
InhaltThis is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented.
SkriptThe class will be taught mainly on the blackboard.

Accompanying electronic material will be uploaded to ILIAS and available through myStudies.

All the material can be found in Anil Chopra's comprehensive textbook given in the literature below.
LiteraturDynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 (Global Edition), ISBN-10: 9780273774242

Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995

Weber B., Tragwerksdynamik. http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=lehr&nr=76 .ETH Zürich, 2002.
Voraussetzungen / BesonderesKnowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable.
151-8015-00LMoisture Transport in Porous Media Information W3 KP2GJ. Carmeliet, O. Dorostkar, A. Kubilay, X. Zhou
KurzbeschreibungMoisture transport and related degradation processes in building and civil engineering materials and structures; concepts of hygrothermal damage analysis and local urban climate prediction; experimental determination of moisture transport properties.
Lernziel- Basic knowledge of moisture transport and related degradation processes in building and civil engineering materials and structures
- Knowledge of experimental determination of moisture transport properties analysis
- Application of knowledge to hygrothermal damage cases and local urban climate
Inhalt1. Introduction
Moisture damage: problem statement
Durability

2. Moisture Transport
Description of moisture transport
Determination of moisture transport properties
Liquid transport in cracked media

3. Hygrothermal analysis: case studies
Heat and mass transport in street canyon, urban microclimate and mitigation measures
Moisture durability analysis of inside insulation: mould growth, wood rot and frost damage
SkriptHandouts, supporting material and exercises are provided online (http://www.carmeliet.ethz.ch/).
LiteraturAll material is provided online (http://www.carmeliet.ethz.ch/)
101-0167-01LFibre Composite Materials in Structural EngineeringW3 KP2GM. Motavalli
Kurzbeschreibung1) Lamina and Laminate Theory
2) FRP Manufacturing and Testing Methods
3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures
4) FRP Reinforced Concrete, All FRP Structures
5) Measurement Techniques and Structural Health Monitoring
LernzielAt the end of the course, you shall be able to

1) Design advanced FRP composites for your structures,

2) To consult owners and clients with necessray testing and SHM techniques for FRP structures,

3) Continue your education as a phd student in this field.
InhaltFibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure.
SkriptPower Point Presentations available online at www.empa.ch/abt303
Literatur1) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994

2) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7

3) fib bulletin 19, Externally applied FRP reinforcement for concrete structures, technical report, 2019

4) SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und Architektenverein SIA.
Voraussetzungen / Besonderes1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including FRP Composites, Shape Memory Alloys, Timber Elements, Large Scale Testing of Structural Components
2) Working with Composite Materials in the Laboratory (application, testing, etc)
101-0637-01LHolzbau I
Hinweis: Studierende der Bauingenieurwissenschaften dürfen diese Lerneinheit nur als Jahreskurs Holzbau I+II belegen.
W3 KP2GA. Frangi, I. Burgert, G. Fink, R. Steiger
KurzbeschreibungEntwurf, Konstruktion und Bemessung von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten.
LernzielVerständnis und Anwendung der theoretischen Grundlagen und der konstruktiven Belange des Ingenieur-Holzbaus. Erkennen der holzspezifischen Besonderheiten, insbesondere der Anisotropie, der Schwind- und Quellverformungen und der Langzeiteinflüsse, sowie deren konstruktive und bemessungstechnische Bewältigung. Entwurf, Konstruktion und Bemessung von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten.
InhaltAnwendungsgebiete des Holzbaus (materialspezifische Merkmale und deren Auswirkung auf die Konstruktionsweise); Holz als Baustoff (Aufbau des Holzes, Sortierung, physikalische und mechanische Eigenschaften von Holz und Holzwerkstoffen); Dauerhaftigkeit und konstruktiver Holzschutz; Bemessungsgrundlagen und Verbindungen (Verklebung, Nägel, Dübel, Bolzen, Schrauben); Bauteile und wichtigste ebene und räumliche Tragwerke (Berechnung und Bemessung unter Beachtung nachgiebiger Verbindungen); besondere konstruktive Belange von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten.
SkriptAutographie Holzbau
Folienkopien
LiteraturHolzbautabellen HBT 1, Lignum (2012)
Norm SIA 265 (2012)
Norm SIA 265/1 (2018)
052-0609-00LEnergie- und Klimasysteme I Information W2 KP2GA. Schlüter
KurzbeschreibungIm ersten Semester des Jahreskurses werden die wesentlichen physikalischen Prinzipien, Konzepte, Komponenten und Systeme für die effiziente und nachhaltige Versorgung von Gebäuden mit Wärme, Kälte und Luft behandelt. Abhängigkeiten und Interaktionen zwischen technischen Systemen und dem architektonischen und städtebaulichen Entwerfen werden aufgezeigt.
LernzielZiel der Vorlesung ist die Kenntnis der physikalischen Grundlagen, relevanten Konzepte und technischen Systeme für die effiziente und nachhaltige Versorgung von Gebäuden bzw. Distrikten mit Wärme, Kälte und Frischluft. Mittels Erlernen überschlägiger Berechnungsmethoden wird die Ermittlung relevanter Grössen und die Identifikation wichtiger Parameter geübt. Auf diese Weise können passende Ansätze für den eigenen Entwurf ausgewählt, qualitativ und quantitativ bewertet und integriert werden.
Inhalt1. Einführung und Überblick
2. Heizen und Kühlen
3. Lüftung
SkriptDie Folien der Vorlesung dienen als Skript und sind als download erhältlich.
LiteraturEine Liste weiterführender Literatur ist am Lehrstuhl erhältlich.
  •  Seite  1  von  1