Search result: Catalogue data in Autumn Semester 2019

Mathematics Master Information
Core Courses
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.
Core Courses: Pure Mathematics
NumberTitleTypeECTSHoursLecturers
401-3225-00LIntroduction to Lie Groups Information W8 credits4GP. D. Nelson
AbstractTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
ObjectiveThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteratureA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A. Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Prerequisites / NoticeTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: Link
401-3001-61LAlgebraic Topology I Information W8 credits4GA. Sisto
AbstractThis is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include:
singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.
Objective
Literature1) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

Book can be downloaded for free at:
Link

See also:
Link

2) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.

3) E. Spanier, "Algebraic topology", Springer-Verlag
Prerequisites / NoticeYou should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.
401-3114-69LIntroduction to Algebraic Number Theory Information W8 credits3V + 1UÖ. Imamoglu
AbstractThis is an introductory course in algebraic number theory covering algebraic integers, discriminant, ideal class group, Minkowski's theorem on the finiteness of the ideal class group, Dirichlet's unit theorem, ramification theory.
Objective
ContentThis is an introductory course in algebraic number theory covering algebraic integers, discriminant, ideal class group, Minkowski's theorem on the finiteness of the ideal class group, Dirichlet's unit theorem, ramification theory.
401-3132-00LCommutative Algebra Information W10 credits4V + 1UE. Kowalski
AbstractThis course provides an introduction to commutative algebra as a foundation for and first steps towards algebraic geometry.
ObjectiveWe shall cover approximately the material from
--- most of the textbook by Atiyah-MacDonald, or
--- the first half of the textbook by Bosch.
Topics include:
* Basics about rings, ideals and modules
* Localization
* Primary decomposition
* Integral dependence and valuations
* Noetherian rings
* Completions
* Basic dimension theory
LiteraturePrimary Reference:
1. "Introduction to Commutative Algebra" by M. F. Atiyah and I. G. Macdonald (Addison-Wesley Publ., 1969)
Secondary Reference:
2. "Algebraic Geometry and Commutative Algebra" by S. Bosch (Springer 2013)
Tertiary References:
3. "Commutative algebra. With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995)
4. "Commutative ring theory" by H. Matsumura (Cambridge University Press 1989)
5. "Commutative Algebra" by N. Bourbaki (Hermann, Masson, Springer)
Prerequisites / NoticePrerequisites: Algebra I (or a similar introduction to the basic concepts of ring theory).
Core Courses: Applied Mathematics and Further Appl.-Oriented Fields
¬
NumberTitleTypeECTSHoursLecturers
401-3651-00LNumerical Analysis for Elliptic and Parabolic Partial Differential Equations Information
Course audience at ETH:
3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course
"Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.
W10 credits4V + 1UC. Schwab
AbstractThis course gives a comprehensive introduction into the numerical treatment of linear and nonlinear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.
ObjectiveParticipants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method
ContentThe course will address the mathematical analysis of numerical solution methods
for linear and nonlinear elliptic and parabolic partial differential equations.
Functional analytic and algebraic (De Rham complex) tools will be provided.
Primal, mixed and nonstandard (discontinuous Galerkin, Virtual, Trefftz) discretizations will be analyzed.

Particular attention will be placed on developing mathematical foundations
(Regularity, Approximation theory) for a-priori convergence rate analysis.
A-posteriori error analysis and mathematical proofs of adaptivity and optimality
will be covered.
Implementations for model problems in MATLAB and python will illustrate the
theory.

A selection of the following topics will be covered:

* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems
LiteratureBrenner, Susanne C.; Scott, L. Ridgway The mathematical theory of finite element methods. Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. xviii+397 pp.

A. Ern and J.L. Guermond: Theory and Practice of Finite Element Methods,
Springer Applied Mathematical Sciences Vol. 159, Springer,
1st Ed. 2004, 2nd Ed. 2015.

R. Verfürth: A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007).
(Also available in German.)

Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp.

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 SMAI Mathématiques et Applications,
Springer, 2012 [DOI: 10.1007/978-3-642-22980-0]

V. Thomee: Galerkin Finite Element Methods for Parabolic Problems,
SECOND Ed., Springer Verlag (2006).
Prerequisites / NoticePractical exercises based on MATLAB

Former title of the course unit: Numerical Methods for Elliptic and Parabolic Partial Differential Equations
401-3621-00LFundamentals of Mathematical Statistics Information W10 credits4V + 1US. van de Geer
AbstractThe course covers the basics of inferential statistics.
Objective
401-3622-00LStatistical Modelling Information W8 credits4GC. Heinze-Deml
AbstractIn regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.
ObjectiveIntroduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.
ContentIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
Lecture notesLecture notes
Prerequisites / NoticeThis is the course unit with former course title "Regression".
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
401-4889-00LMathematical Finance Information W11 credits4V + 2UJ. Teichmann
AbstractAdvanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics
ObjectiveAdvanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes)
ContentThis is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others
Lecture notesThe course is based on different parts from different books as well as on original research literature.

Lecture notes will not be available.
Literature(will be updated later)
Prerequisites / NoticePrerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)
Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see Link.
401-3901-00LMathematical Optimization Information W11 credits4V + 2UR. Zenklusen
AbstractMathematical treatment of diverse optimization techniques.
ObjectiveThe goal of this course is to get a thorough understanding of various classical mathematical optimization techniques with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on this structural understanding.
ContentKey topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and techniques;
- Equivalence between optimization and separation;
- Brief introduction to Integer Programming.
Literature- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Prerequisites / NoticeSolid background in linear algebra.
Bachelor Core Courses: Pure Mathematics
Further restrictions apply, but in particular:
401-3531-00L Differential Geometry I can only be recognised for the Master Programme if 401-3532-00L Differential Geometry II has not been recognised for the Bachelor Programme.
Analogously for:
401-3461-00L Functional Analysis I - 401-3462-00L Functional Analysis II
401-3001-61L Algebraic Topology I - 401-3002-12L Algebraic Topology II
401-3132-00L Commutative Algebra - 401-3146-12L Algebraic Geometry
For the category assignment take contact with the Study Administration Office (Link) after having received the credits.
NumberTitleTypeECTSHoursLecturers
401-3461-00LFunctional Analysis I Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics.
E-10 credits4V + 1UM. Struwe
AbstractBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.
ObjectiveAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteratureWe will be using the Lecture Notes on

"Funktionalanalysis I" by Michael Struwe.

Other useful, and recommended references include the following books:

Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011.

Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017.

Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

Dirk Werner, "Funktionalanalysis". Springer-Lehrbuch, 8. Auflage. Springer, 2018
Prerequisites / NoticeSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces).
401-3531-00LDifferential Geometry I Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics.
E-10 credits4V + 1UU. Lang
AbstractIntroduction to differential geometry and differential topology. Contents: Curves, (hyper-)surfaces in R^n, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem.
Objective
Lecture notesPartial lecture notes are available from Link
LiteratureDifferential geometry in R^n:
- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differential topology:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology
401-3371-00LDynamical Systems IW10 credits4V + 1UW. Merry
AbstractThis course is a broad introduction to dynamical systems. Topic covered include topological dynamics, ergodic theory and low-dimensional dynamics.
ObjectiveMastery of the basic methods and principal themes of some aspects of dynamical systems.
ContentTopics covered include:

1. Topological dynamics
(transitivity, attractors, chaos, structural stability)

2. Ergodic theory
(Poincare recurrence theorem, Birkhoff ergodic theorem, existence of invariant measures)

3. Low-dimensional dynamics
(Poincare rotation number, dynamical systems on [0,1])
LiteratureThe most relevant textbook for this course is

Introduction to Dynamical Systems, Brin and Stuck, CUP, 2002.

I will also produce full lecture notes, available from my website

Link
Prerequisites / NoticeThe material of the basic courses of the first two years of the program at ETH is assumed. In particular, you should be familiar with metric spaces and elementary measure theory.
Bachelor Core Courses: Applied Mathematics ...
Further restrictions apply, but in particular:
401-3601-00L Probability Theory can only be recognised for the Master Programme if neither 401-3642-00L Brownian Motion and Stochastic Calculus nor 401-3602-00L Applied Stochastic Processes has been recognised for the Bachelor Programme.
402-0205-00L Quantum Mechanics I is eligible as an applied core course, but only if 402-0224-00L Theoretical Physics (offered for the last time in FS 2016) isn't recognised for credits (neither in the Bachelor's nor in the Master's programme).
For the category assignment take contact with the Study Administration Office (Link) after having received the credits.
NumberTitleTypeECTSHoursLecturers
401-3601-00LProbability Theory Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics.
E-10 credits4V + 1UA.‑S. Sznitman
AbstractBasics of probability theory and the theory of stochastic processes in discrete time
ObjectiveThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
ContentThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Lecture notesavailable, will be sold in the course
LiteratureR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991
402-0205-00LQuantum Mechanics I Information W10 credits3V + 2UG. Blatter
AbstractIntroduction to quantum theory: wave mechanics, Schroedinger equation, angular momentum, central force problems, potential scattering, spin. General structure: Hilbert space, states, obervables, equation of motion, density matrix, symmetries, Heisenberg- and interaction picture, approximate methods:
perturbation theory, variational approach, quasi-classics.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentStarting from Feynman's path-integral formulation, we develop the operator technique and introduce Dirac's notation. Quantum phenomena are developed by way of example for one-dimensional single particle problems (bound states, tunneling, scattering problems, resonances, periodic and disordered potentials). We introduce rotations and angular momenta and proceed with central symmetric problems, three dimensional scattering theory, spin, and the addition of angular momenta/spin. Various pictures (Schroedinger-, Heisenberg-, Dirac-) are explained and approximative methods such as variational techniques, perturbation theory, and quasi-classical formalism are introduced.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baim, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
  •  Page  1  of  1