Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

402-0897-00L  Introduction to String Theory

SemesterAutumn Semester 2019
LecturersB. Hoare
Periodicityyearly recurring course
Language of instructionEnglish

AbstractThis course is an introduction to string theory. The first half of the course covers the bosonic string and its quantization in flat space, concluding with the introduction of D-branes and T-duality. The second half will cover some advanced topics, which will be selected from those listed below.
ObjectiveThe objective of this course is to motivate the subject of string theory, exploring the important role it has played in the development of modern theoretical and mathematical physics. The goal of the first half of the course is to give a pedagogical introduction to the bosonic string in flat space. Building on this foundation, an overview of various more advanced topics will form the second half of the course.
ContentI. Introduction
II. The relativistic point particle
III. The classical closed string
IV. Quantizing the closed string
V. The open string and D-branes
VI. T-duality in flat space

Possible advanced topics include:
VII. Conformal field theory
VIII. The Polyakov path integral
IX. String interactions
X. Low energy effective actions
XI. Superstring theory
LiteratureLecture notes:

String Theory - D. Tong

Lectures on String Theory - G. Arutyunov


Superstring Theory - M. Green, J. Schwarz and E. Witten (two volumes, CUP, 1988)
Volume 1: Introduction
Volume 2: Loop Amplitudes, Anomalies and Phenomenology

String Theory - J. Polchinski (two volumes, CUP, 1998)
Volume 1: An Introduction to the Bosonic String
Volume 2: Superstring Theory and Beyond

Basic Concepts of String Theory - R. Blumenhagen, D. Lüst and S. Theisen (Springer-Verlag, 2013)