# 402-0897-00L Introduction to String Theory

Semester | Autumn Semester 2019 |

Lecturers | B. Hoare |

Periodicity | yearly recurring course |

Language of instruction | English |

Abstract | This course is an introduction to string theory. The first half of the course covers the bosonic string and its quantization in flat space, concluding with the introduction of D-branes and T-duality. The second half will cover some advanced topics, which will be selected from those listed below. |

Objective | The objective of this course is to motivate the subject of string theory, exploring the important role it has played in the development of modern theoretical and mathematical physics. The goal of the first half of the course is to give a pedagogical introduction to the bosonic string in flat space. Building on this foundation, an overview of various more advanced topics will form the second half of the course. |

Content | I. Introduction II. The relativistic point particle III. The classical closed string IV. Quantizing the closed string V. The open string and D-branes VI. T-duality in flat space Possible advanced topics include: VII. Conformal field theory VIII. The Polyakov path integral IX. String interactions X. Low energy effective actions XI. Superstring theory |

Literature | Lecture notes: String Theory - D. Tong http://www.damtp.cam.ac.uk/user/tong/string.html Lectures on String Theory - G. Arutyunov http://stringworld.ru/files/Arutyunov_G._Lectures_on_string_theory.pdf Books: Superstring Theory - M. Green, J. Schwarz and E. Witten (two volumes, CUP, 1988) Volume 1: Introduction Volume 2: Loop Amplitudes, Anomalies and Phenomenology String Theory - J. Polchinski (two volumes, CUP, 1998) Volume 1: An Introduction to the Bosonic String Volume 2: Superstring Theory and Beyond Errata: http://www.kitp.ucsb.edu/~joep/errata.html Basic Concepts of String Theory - R. Blumenhagen, D. Lüst and S. Theisen (Springer-Verlag, 2013) |