Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

401-3057-00L  Endliche Geometrien II

SemesterHerbstsemester 2019
DozierendeN. Hungerbühler
Periodizität2-jährlich wiederkehrende Veranstaltung
LehrveranstaltungFindet dieses Semester nicht statt.
LehrspracheDeutsch


KurzbeschreibungEndliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate.
LernzielEndliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne.
InhaltEndliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne
Literatur- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.