Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

151-0634-00L  Perception and Learning for Robotics

SemesterFrühjahrssemester 2019
DozierendeC. D. Cadena Lerma, J. J. Chung
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch
KommentarNumber of participants limited to: 30

To apply for the course please create a CV in pdf of max. 2 pages, including your machine learning and/or robotics experience. Please send the pdf to cesarc@ethz.ch for approval.


KurzbeschreibungThis course covers tools from statistics and machine learning enabling the participants to deploy these algorithms as building blocks for perception pipelines on robotic tasks. All mathematical methods provided within the course will be discussed in context of and motivated by example applications mostly from robotics. The main focus of this course are student projects on robotics.
LernzielApplying Machine Learning methods for solving real-world robotics problems.
InhaltDeep Learning for Perception; (Deep) Reinforcement Learning; Graph-Based Simultaneous Localization and Mapping
SkriptSlides will be made available to the students.
LiteraturWill be announced in the first lecture.
Voraussetzungen / BesonderesThe students are expected to be familiar with material of the "Recursive Estimation" and the "Introduction to Machine Learning" lectures. Particularly understanding of basic machine learning concepts, stochastic gradient descent for neural networks, reinforcement learning basics, and knowledge of Bayesian Filtering are required. Furtheremore, good knowledge of programming in C++ and Python is required.