From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

402-0812-00L  Computational Statistical Physics

SemesterSpring Semester 2019
LecturersL. Böttcher
Periodicityyearly recurring course
Language of instructionEnglish


AbstractComputer simulation methods in statistical physics. Classical Monte-Carlo-simulations: finite-size scaling, cluster algorithms, histogram-methods, renormalization group. Application to Boltzmann machines. Simulation of non-equilibrium systems.

Molecular dynamics simulations: long range interactions, Ewald summation, discrete elements, parallelization.
ObjectiveThe lecture will give a deeper insight into computer simulation methods in statistical physics. Thus, it is an ideal continuation of the lecture
"Introduction to Computational Physics" of the autumn semester. In the first part students learn to apply the following methods: Classical Monte Carlo-simulations, finite-size scaling, cluster algorithms, histogram-methods, renormalization group. Moreover, students learn about the application of statistical physics methods to Boltzmann machines and how to simulate non-equilibrium systems.

In the second part, students apply molecular dynamics simulation methods. This part includes long range interactions, Ewald summation and discrete elements.
ContentComputer simulation methods in statistical physics. Classical Monte-Carlo-simulations: finite-size scaling, cluster algorithms, histogram-methods, renormalization group. Application to Boltzmann machines. Simulation of non-equilibrium systems. Molecular dynamics simulations: long range interactions, Ewald summation, discrete elements, parallelization.
Lecture notesLecture notes and slides are available online and will be distributed if desired.
LiteratureLiterature recommendations and references are included in the lecture notes.
Prerequisites / NoticeSome basic knowledge about statistical physics, classical mechanics and computational methods is recommended.