Romain Quidant: Katalogdaten im Herbstsemester 2022

NameHerr Prof. Dr. Romain Quidant
LehrgebietNanophotonik
Adresse
Professur für Nanophotonik
ETH Zürich, LEE P 207
Leonhardstrasse 21
8092 Zürich
SWITZERLAND
Telefon+41 44 632 79 22
E-Mailrquidant@ethz.ch
URLhttps://light.ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
151-0913-00LIntroduction to Photonics4 KP2V + 2UR. Quidant, J. Ortega Arroyo
KurzbeschreibungThis course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.
LernzielPhotonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.
InhaltI- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEEZERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers
SkriptClass notes and handouts
LiteraturOptics (Hecht) - Pearson
Voraussetzungen / BesonderesPhysics I, Physics II