Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Christoph Schwab: Katalogdaten im Herbstsemester 2019

NameHerr Prof. Dr. Christoph Schwab
Seminar für Angewandte Mathematik
ETH Zürich, HG G 57.1
Rämistrasse 101
8092 Zürich
Telefon+41 44 632 35 95
Fax+41 44 632 10 85
BeziehungOrdentlicher Professor

401-3650-68LNumerical Analysis Seminar: Mathematics of Deep Neural Network Approximation Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6. Consent of Instructor needed.
4 KP2SC. Schwab
KurzbeschreibungThe seminar will review recent _mathematical results_
on approximation power of deep neural networks (DNNs).
The focus will be on mathematical proof techniques to
obtain approximation rate estimates (in terms of neural network
size and connectivity) on various classes of input data
including, in particular, selected types of PDE solutions.
InhaltPresentation of the Seminar:
Deep Neural Networks (DNNs) have recently attracted substantial
interest and attention due to outperforming the best established
techniques in a number of tasks (Chess, Go, Shogi,
autonomous driving, language translation, image classification, etc.).
In big data analysis, DNNs achieved remarkable performance
in computer vision, speech recognition and natural language processing.
In many cases, these successes have been achieved by
heuristic implementations combined
with massive compute power and training data.

For a (bird's eye) view, see
and, more mathematical and closer to the seminar theme,

The seminar will review recent _mathematical results_
on approximation power of deep neural networks (DNNs).
The focus will be on mathematical proof techniques to
obtain approximation rate estimates (in terms of neural network
size and connectivity) on various classes of input data
including, in particular, selected types of PDE solutions.
Mathematical results support that DNNs can
equalize or outperform the best mathematical results
known to date.

Particular cases comprise:
high-dimensional parametric maps,
analytic and holomorphic maps,
maps containing multi-scale features which arise as solution classes from PDEs,
classes of maps which are invariant under group actions.

Format of the Seminar:
The seminar format will be oral student presentations, combined with written report.
Student presentations will be
based on a recent research paper selected in two meetings
at the start of the semester.

Grading of the Seminar:
Passing grade will require
a) 1hr oral presentation with Q/A from the seminar group and
b) typed seminar report (``Ausarbeitung'') of several key aspects
of the paper under review.

Each seminar topic will allow expansion to a semester or a
master thesis in the MSc MATH or MSc Applied MATH.

The seminar will _not_ address recent developments in DNN software,
eg. TENSORFLOW, and algorithmic training heuristics, or
programming techniques for DNN training in various specific applications.
401-3651-00LNumerical Analysis for Elliptic and Parabolic Partial Differential Equations Information
Course audience at ETH:
3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course
"Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.
10 KP4V + 1UC. Schwab
KurzbeschreibungThis course gives a comprehensive introduction into the numerical treatment of linear and nonlinear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.
LernzielParticipants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method
InhaltThe course will address the mathematical analysis of numerical solution methods
for linear and nonlinear elliptic and parabolic partial differential equations.
Functional analytic and algebraic (De Rham complex) tools will be provided.
Primal, mixed and nonstandard (discontinuous Galerkin, Virtual, Trefftz) discretizations will be analyzed.

Particular attention will be placed on developing mathematical foundations
(Regularity, Approximation theory) for a-priori convergence rate analysis.
A-posteriori error analysis and mathematical proofs of adaptivity and optimality
will be covered.
Implementations for model problems in MATLAB and python will illustrate the

A selection of the following topics will be covered:

* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems
LiteraturBrenner, Susanne C.; Scott, L. Ridgway The mathematical theory of finite element methods. Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. xviii+397 pp.

A. Ern and J.L. Guermond: Theory and Practice of Finite Element Methods,
Springer Applied Mathematical Sciences Vol. 159, Springer,
1st Ed. 2004, 2nd Ed. 2015.

R. Verfürth: A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007).
(Also available in German.)

Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp.

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 SMAI Mathématiques et Applications,
Springer, 2012 [DOI: 10.1007/978-3-642-22980-0]

V. Thomee: Galerkin Finite Element Methods for Parabolic Problems,
SECOND Ed., Springer Verlag (2006).
Voraussetzungen / BesonderesPractical exercises based on MATLAB

Former title of the course unit: Numerical Methods for Elliptic and Parabolic Partial Differential Equations
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information 0 KP2KR. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungResearch colloquium