Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Gian Michele Graf: Katalogdaten im Herbstsemester 2019

NameHerr Prof. Dr. Gian Michele Graf
LehrgebietTheoretische Physik
Institut für Theoretische Physik
ETH Zürich, HIT K 42.1
Wolfgang-Pauli-Str. 27
8093 Zürich
Auszeichnung: Die Goldene Eule
Telefon+41 44 633 25 72
Fax+41 44 633 11 09
BeziehungOrdentlicher Professor

401-5330-00LTalks in Mathematical Physics Information 0 KP1KA. Cattaneo, G. Felder, M. Gaberdiel, G. M. Graf, T. H. Willwacher, Uni-Dozierende
KurzbeschreibungResearch colloquium
402-0861-00LStatistical Physics10 KP4V + 2UG. M. Graf
KurzbeschreibungThe lecture focuses on classical and quantum statistical physics. Various techniques, cumulant expansion, path integrals, and specific systems are discussed: Fermions, photons/phonons, Bosons, magnetism, van der Waals gas. Phase transitions are studied in mean field theory (Weiss, Landau). Including fluctuations leads to critical phenomena, scaling, and the renormalization group.
LernzielThis lecture gives an introduction into the the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.
InhaltThermodynamics, three laws of thermodynamics, thermodynamic potentials, phenomenology of phase transitions.
Classical statistical physics: micro-canonical-, canonical-, and grandcanonical ensembles, applications to simple systems.
Quantum statistical physics: single particle, ideal quantum gases, fermions and bosons, statistical interaction.
Techniques: variational approach, cumulant expansion, path integral formulation.
Degenerate fermions: Fermi gas, electrons in magnetic field.
Bosons: photons and phonons, Bose-Einstein condensation.
Magnetism: Ising-, XY-, Heisenberg models, Weiss mean-field theory.
Van der Waals gas-liquid transition.
Landau theory of phase transitions, first- and second order, tricritical.
Fluctuations: field theory approach, Gauss theory, self-consistent field, Ginzburg criterion.
Critical phenomena: scaling theory, universality.
Renormalization group: general theory and applications to spin models (real space RG), phi^4 theory (k-space RG), Kosterlitz-Thouless theory.
SkriptLecture notes available in English.
LiteraturNo specific book is used for the course. Relevant literature will be given in the course.
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
7 KP15RG. M. Graf
KurzbeschreibungDerivation and discussion of Maxwell's equations, from the static limit to the full dynamical case. Wave equation, waveguides, cavities. Generation of electromagnetic radiation, scattering and diffraction of light. Structure of Maxwell's equations, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and radiation properties.
LernzielDevelop a physical understanding for static and dynamic phenomena related to (moving) charged objects and understand the structure of the classical field theory of electrodynamics (transverse versus longitudinal physics, invariances (Lorentz-, gauge-)). Appreciate the interrelation between electric, magnetic, and optical phenomena and the influence of media. Understand a set of classic electrodynamical phenomena and develop the ability to solve simple problems independently. Apply previously learned mathematical concepts (vector analysis, complete systems of functions, Green's functions, co- and contravariant coordinates, etc.). Prepare for quantum mechanics (eigenvalue problems, wave guides and cavities).
InhaltClassical field theory of electrodynamics: Derivation and discussion of Maxwell equations, starting from the static limit (electrostatics, magnetostatics, boundary value problems) in the vacuum and in media and subsequent generalization to the full dynamical case (Faraday's law, Ampere/Maxwell law; potentials and gauge invariance). Wave equation and solutions in full space, half-space (Snell's law), waveguides, cavities, generation of electromagnetic radiation, scattering and diffraction of light (optics). Application to various specific examples. Discussion of the structure of Maxwell's equations, Lorentz invariance, relativity theory and covariance, Lagrangian formulation. Dynamics
of relativistic particles in the presence of fields and their radiation properties (synchrotron).
LiteraturJ.D. Jackson, Classical Electrodynamics
W.K.H Panovsky and M. Phillis, Classical electricity and magnetism
L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus media
A. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik)
M. Born and E. Wolf, Principles of optics
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II